MITSUBISHI ELECTRIC AUTOMATION, INC.

UNINTERRUPTIBLE POWER SUPPLY SYSTEM

9700 SERIES

OWNERS / TECHNICAL MANUAL (100 - 225kVA)

TABLE OF CONTENTS

LIST	OF TABLES	ii
LIST	OF FIGURES	iii
INTF	RODUCTION	iv
1.0	GENERAL	1-1
1.1	DEFINITIONS	1-2
1.2	OVERVIEW	1-3
1.3	SPECIFICATIONS	1-9
2.0	OPERATION CONTROLS AND INDICATORS	2-1
2.1	LED DISPLAY	2-2
2.2	KEYPAD	2-2
2.3	LIQUID CRYSTAL DISPLAY	2-3
2.4	EXTERNAL SIGNAL TERMINAL BLOCK	2-9
3.0	INSTALLATION AND OPERATION	3-1
3.1	TRANSPORTATION AND INSTALLATION	3-1
3.2	INSTALLATION PROCEDURE	3-1
3.3	PROCEDURE FOR CABLE CONNECTIONS	3-2
3.4	OPERATING PROCEDURES	3-12
4.0	RESPONSE TO UPS FAILURE	4-1
5.0	PARTS REPLACEMENT	5-1
6.0	FAULT CODES	6-1
7.0	WARRANTY & OUT OF WARRANTY SERVICE	7-1

List of Tables

Table 1.1	Power Specifications	1-9
Table 1.2	UPS Module Information	1-9
Table 1.3	Input Cabinet Information	1-9
Table 1.4	Detail of Specifications	1-10
Table 1.5	Rating of Circuit Breakers (MCCB)	1-11
	and Fuses	
Table 3.1	How to Transport and Install the System	3-1
Table 3.2	List of Weights (Ib.)	3-1
Table 3.3	Maximum Permitted Fault Current	3-2
Table 3.4	Recommended Cable Size and	3-5
	Torque Requirements	
Table 3.5	Crimp Type Compression Lug	3-6

List of Figures

Figure 1.1	Single Line Diagram-Normal Operation	1-3
Figure 1.2	Single Line Diagram-Bypass Operation	1-4
Figure 1.3	Single Line Diagram-Battery Operation	1-4
Figure 1.4	UPS Parts Location	1-6
Figure 2.1	Operation/Display Panel	2-1
Figure 2.2	Main Screen	2-3
Figure 2.3	Bypass Screen	2-3
Figure 2.4	Input Screen	2-4
Figure 2.5	Output Voltage Screen	2-4
Figure 2.6	Output Current Screen	2-4
Figure 2.7	Trend Graph Screen	2-5
Figure 2.8	Battery Screen	2-5
Figure 2.9	Remote / Local Selection Screen	2-5
Figure 2.10	Operation Menu Screen	2-6
Figure 2.11	Battery Operation Screen	2-7
Figure 2.12	Battery Low Voltage Screen	2-7
Figure 2.13	Discharge Termination Screen	2-7
Figure 2.14	Fault Indication Screen	2-8
Figure 2.15	External Signal Terminal Block	2-9
Figure 2.16	Control Wiring for External Contacts	2-10
Figure 2.17	Remote "Start" Contact Connections	2-11
Figure 2.18	External communication connector	2-12
Figure 3.1	UPS Terminal Name	3-7
Figure 3.2	Diagram of input/output Terminals	3-8
Figure 3.3	Start-up Menu	3-24
Figure 3.4	Inverter Start / Stop	3-24

INTRODUCTION

Your Mitsubishi Uninterruptible Power System (UPS) is designed to provide many years of reliable protection from power failure, brown-outs, line noise, and voltage transients. To ensure optimum performance of the equipment, follow the manufacturer's instructions. This manual contains descriptions required to operate the UPS. Please read this manual carefully and retain it for future reference.

IMPORTANT SAFETY INSTRUCTIONS SAVE THESE INSTRUCTIONS

This manual contains important instructions for the 9700 Series Uninterruptible Power Supply Systems that should be followed during installation and maintenance of the UPS and batteries.

WARNING 1

Lethal voltages exist within the equipment during operation. Observe all warning and cautions in this manual. Failure to comply may result in serious injury or death. Obtain qualified service for this equipment as instructed.

WARNING 2

This UPS does not include a Bypass Input circuit breaker (MCCB). The Bypass Input contactor (CB3) does not protect against load induced short circuits. The bypass input circuit breaker (MCCB) is field supplied and installed. Breaker(MCCB)'s Specifications are as follows:

Capacity (kVA)	Bypass Voltage (VAC)		Recommended
		Rating (AAC)	Breaker (A)
100	208	278	350
100	480	120	150
100	600	96	100
150	208	416	500
150	480	180	225
150	600	144	150
225	208	625	700
225	480	271	300
225	600	217	225
300	480	361	400
300	600	289	300
375	480	451	500
375	600	361	400

WARNING 2

This UPS does not include a Bypass Input circuit breaker (MCCB). The Bypass Input contactor (CB3) does not protect against load induced short circuits. The bypass input circuit breaker (MCCB) is field supplied and installed. Breaker(MCCB)'s Specifications are as follows:

Capacity (kVA)	Bypass Voltage (VAC)	Maximum Bypass Rating (AAC)	Recommended Breaker (A)
100	208	278	350
100	480	120	150
100	600	96	100
150	208	416	500
150	480	180	225
150	600	144	150
225	208	625	700
225	480	271	300
225	600	217	225
300	480	361	400
300	600	289	300
375	480	451	500
375	600	361	400

1.0 GENERAL

The Mitsubishi 9700 Series UPS is designed to provide continuous, clean electrical power to your critical load and to monitor power conditions affecting that load. In the event of an input power failure, the UPS will supply power to the critical load for the specified battery time.

If the input power is not restored promptly, back up power from the UPS battery permits the orderly shutdown of equipment supported by the UPS. The UPS is simple to start-up, operate and maintain.

The 9700 Series UPS is available in five kVA sizes-100, 150, 225, 300, 375kVA. Specifications for each kVA model appear in Section 1.3. The principles of operation described herein are applicable to all models.

This manual provides an overview of the 9700 Series components and their functions. It describes the appearance and purpose of operator controls and indicators. It contains procedures for operation, start-up, shutdown, and basic maintenance.

1.1 Definitions

UNINTERRUPTIBLE POWER SUPPLY SYSTEM (UPS) - All components within the UPS Module Cabinet includes the batteries which function as a system to provide continuous, conditioned AC power to a load. This is sometimes referred to as the "System".

UPS MODULE CABINET - The metal enclosure which contains the Converter / Charger, the Inverter, the Static Transfer Switch, the Internal Bypass line, the operator controls, and the internal control system required to provide specified AC power to a load.

UPS MODULE - The Converter / Charger and Inverter assemblies which, under the direction of the internal control system and operator controls, provide specified AC power to a load.

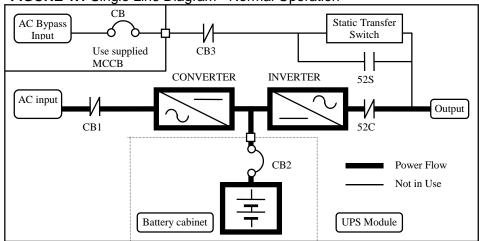
CONVERTER / CHARGER - The UPS components which contain the equipment and controls necessary to convert input AC power to regulated DC power required for battery charging and for supplying power to the Inverter.

INVERTER - The UPS components which contain the equipment and controls necessary to convert DC power from the Converter / Charger, or the battery, to AC power required by the critical load.

STATIC TRANSFER SWITCH - The device which connects the critical load to the bypass line when the UPS module cannot supply continuous power.

BYPASS LINE - The line which conducts electricity directly from the input power source to the critical load during Maintenance or whenever the UPS is not completely operational.

INPUT POWER - Power provided by the electrical utility company, or auxiliary generator, which is connected to the UPS for supplying the critical load.



1.2 Overview

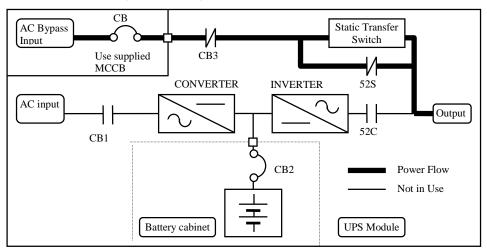
The UPS provides two power paths between the utility source and the critical load as shown in figures 1.1 and 1.2.

A) Through the UPS Module (FIGURE 1.1)

FIGURE 1.1 Single Line Diagram - Normal Operation

When the load is on the Inverter, the internal control system determines which of the two paths supplies power to the load. During normal operation, the path through the UPS module is used.

Input AC power flows through the UPS where it is converted to DC by the Converter / Charger. This DC power is utilized to charge the UPS battery and to provide power to the Inverter. The Inverter converts the DC power to clean AC power to supply the critical load.


The conversion - inversion process eliminates any voltage transients or fluctuations existing in the input power before it reaches the critical load.

* The Bypass Input circuit breaker (MCCB) for protection of the UPS and cables is field supplied and field installed. (See WARNING 2 on page iv)

B) Internal Static Bypass Line (FIGURE 1.2)

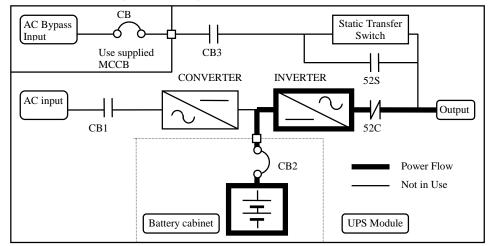
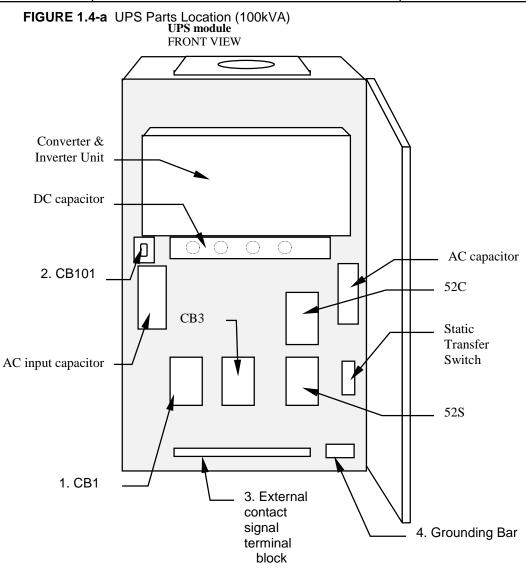

The Internal Static Bypass line is a Hard wired line through CB3, contactor 52S which supplies the critical load with unconditioned input power. The purpose of this line is to route power to the critical load while the UPS module is de-energized during Start-up before the system is fully operational.

FIGURE 1.2 Single Line Diagram- Bypass Operation

C) Inverter supply at battery operation (FIGURE 1.3)

FIGURE 1.3 Single Line Diagram - Battery Operation


If the input power is interrupted, the battery will immediately supply the DC power required by the Inverter to maintain continuous AC power to the load. A fully charged battery will provide power for the specified time at the rated load, or longer, at a reduced load.

When power is restored after a low battery shutdown, the Converter automatically restarts operation, recharges the batteries, and the Inverter is automatically restarted without operator intervention. The load is assumed by the inverter automatically without operator intervention.

In the event of a power failure, the rectifier will de-energize and the batteries will discharge into the inverter and maintain power to the critical until a) the battery capacity expires and the inverter turns off, or b) input power is restored after which the converter will power the critical load and simultaneously recharge the batteries. Figure 1.3 illustrates the flow diagram during battery operation.

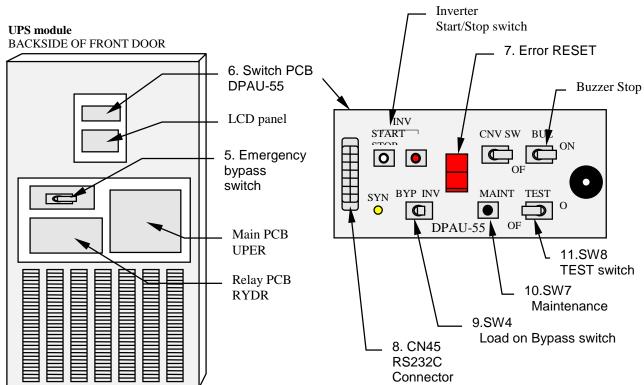


FIGURE 1.4-b UPS Parts Location (Continued)

Description of Figure 1.4:

- 1. AC Input circuit breaker (CB1) Circuit breaker for converter input power.
- 2. Control Power circuit breaker(CB101)
- 3. **External contact signal terminal block** Terminal block to connect contact signal input/output lines to and from the external devices. Refer to FIGURE 2.4 for details.
- 4. Grounding bar (E)
- 5. **Emergency bypass switch.** This switch activates bypass power supply for emergency reasons if the UPS is turned off. Normal position is "TRANSFER is PERFORMED"

6. Switches on the DPAU-54(PCB) (FOR SERVICE PERSONNEL ONLY)

Normally the customers do not have to operate those switches.

- SW4 (Load on Bypass switch) (9)
- SW3 (Maintenance Set button) (10)
- SW5 (TEST Switch): <u>Normal = "Off" side</u>. ()
- SW6 (Error RESET) (11)
- 7. **"Error reset" switch** This switch resets errors resulting from alarm conditions. (Do not operate this switch while inverter and converter are in operation.)
- 8. RS232C connector (CN45)

9. Bypass manual change-over button (FOR SERVICE PERSONNEL ONLY)

This switch is used to transfer the UPS from inverter to static bypass for maintenance purposes. Do not operate it under normal operation. Transfers will be lock-out if the bypass voltage is more than +10%,-10% of nominal.

- 1) Uninterrupted switching is made at the time of synchronous operation. Switching is impossible at the time of asynchronous operation.
- 2) Return to "Normal" after use.
- 10. Maintenance (Set) button This switch sets the UPS menu parameters.
- 11. "Test mode" switch This switch should be operated by Authorized Service Personnel only.

1.3 Specifications

The UPS name plate displays the rated kVA as well as nominal voltages and currents. The name plate is located on the interior side of the UPS front door.

TABLE 1.1 Power Specifications

Rated output	Input voltage	Output voltage
Power	3 Φ / 3 wire	3 Φ /3 or 4 wire
100kVA / 80kW	208V, 480V or 600V	208V, 480V or 600V
150kVA / 120kW	208V, 480V or 600V	208V, 480V or 600V
225kVA / 180kW	208V, 480V or 600V	208V, 480V or 600V
300kVA / 270kW	208V, 480V or 600V	480V or 600V
375kVA / 338kW	208V, 480V or 600V	480V or 600V

TABLE 1.2 UPS Module Information

UPS	CABLE	WIDTH	DEPTH	HEIGHT	WEIGHT	HEATING
[kVA]	ENTRY	[in / mm]	[in / mm]	[in / mm]	[lb./ kg]	[kBTU/h]
100	BOTTOM	35.4 / 900	29.9 / 759	79.7 / 2025	1900 / 860	31.0
150	BOTTOM	47.2 / 1200	29.9 / 759	79.7 / 2025	2350 / 1065	45.3
225	BOTTOM	55.1 / 1400	29.9 / 759	79.7 / 2025	3300 / 1495	63.0
300	TOP	94.5 / 2400	38.3 / 974	79.7 / 2025	4950 / 2240	113.8
375	TOP	94.5 / 2400	38.3 / 974	79.7 / 2025	5550 / 2515	149.4

TABLE 1.3 Input Cabinet Information

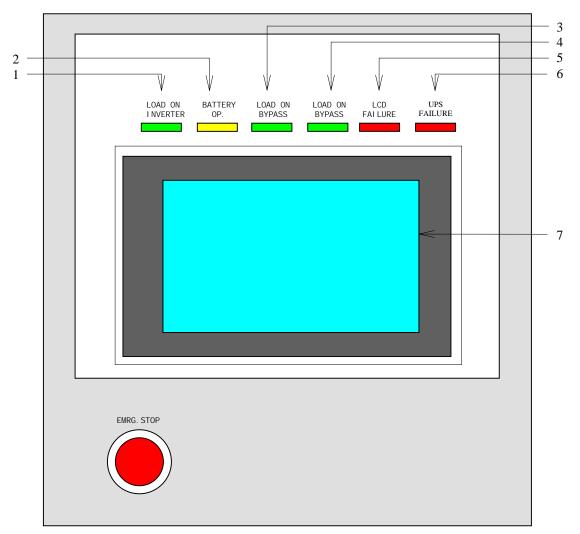
UPS	INPUT	CABLE	WIDTH	DEPTH	HEIGHT	WEIGHT
[kVA]	VOLTAGE[V]	ENTRY	[in / mm]	[in / mm]	[in / mm]	[lb./ kg]
100	480	TOP	36.0 / 910	29.9 / 759	79.7 / 2025	1275 / 580
150	480	TOP	44.0 / 1118	29.9 / 759	79.7 / 2025	1325 / 600
225	480	TOP	44.0 / 1118	29.9 / 759	79.7 / 2025	2000 / 910
300	480	TOP	44.0 / 1176	38.3 / 973	79.7 / 2025	2600 / 1180
375	480	TOP	54.0 / 1320	38.3 / 973	79.7 / 2025	3000 / 1360

FABLE 1.4 Detail of Specific Rated Output kVA	100	150	225	300	375
Rated Output kW	80	120	180	270	338
	AC INPU	T CHARACT	ERISTICS		
Configuration	3 phase,	3 wire			
Voltage	208 V, 48	0 V, 600 V	+10% ~ -15%	6	
Input Power Factor	0.98 Typi	cal			
Frequency	60 Hz ± 5	%			
Reflected Current THD	3% max.	at 100% load	l; 5% max. a	t 50% load	
	STAT	IC BYPASS	INPUT		
Configuration	3 phase,	3 or 4 wire			
Voltage	120/208	/, 277/480 V	, 346/ 600 V	±10%	
Frequency	60 Hz (±3	% Tracking	window)		
	· · · ·	BATTERY			
Туре	VRLA, Flo	oded Lead /	Acid, Nickel C	admium	
Ride Through	Applicatio	on Specific			
Nominal Voltage	360 VDC				
Minimum Voltage	290 VDC				
Number of Cells	176 ~ 185	5			
		AC OUTPUT	Г		
Configuration	3 phase,	3 or 4 wire			
Voltage	120/208	/, 277/480 V	, 346/ 600 V		
Voltage Stability	±1%				
Frequency	60 Hz				
Frequency Stability	±0.01% ir	n free running	g mode		
Power Factor	0.8 nomir	nal	-	0.9 nomina	
Power Factor range	0.8 ~ 1.0	lagging (with	in output kW	rating)	
Voltage THD	2% maxir	num THD at	100% Linear	Load	
-	5% maxir	num THD at	100% non-lin	ear load	
Transient Response	±2% max	imum at 100 ⁴	% load step		
	±1% max	imum at loss	or return of A	C power	
	±5% max	imum at load	transfer to/fr	om static byp	ass
Transient Recovery	Less thar	1 line cycle			
Voltage Unbalance	1% maxir	num at 100%	unbalanced	load	
Phase Displacement	1% maxir	num at 100%	unbalanced	load	
Inverter Overload	125% for	10 minutes;	150% for 1 se	ec	
System Overload	500% for	2 cycle (with	bypass availa	able)	
Bypass Overload	125% for	10 minutes			
Withstand Rating	65kA*	*:wit	h optional fus	es	
	EN	VIRONMEN	TAL		
Cooling	Forced A	ir			
Operating Temperature		•	40° C). Reco	mmended 68	° F ~ 86° F
	(20° C ~ 3		naina		
Relative Humidity		6 Non Conde	<u> </u>		ting
Altitude			rs); 5000 feet		ung
Location			osive gases a	na aust)	
Paint Color	iviunsell 5	Y7/1 (Beige)			

9700 SERIES UPS OWNERS / TECHNICAL MANUAL

TABLE 1.5 Rating of Circuit Breakers (MCCB) and Fuses

	NUMBER	APPLICATION	OUTPUT CAPACITY OF EQUIPMENT												
			100kVA 150kVA				225kVA			300kVA		375kVA			
			208V	480V	600V	208V	480V	600V	208V	480V	600V	480V	600V	480V	600V
М	CB1	AC input circuit breaker	-	-	-	-	-	-	-	-	-	600A	400A	800A	600A
С	52RC	AC input contactor	350A			420A			660A			-		-	
		Battery disconnect circuit													
С	CB2	breaker		400A			600A			800A		120	A00	160	A00
В	CB101	Control circuit breaker	15A							30A					
	FCU, FCV, FCW,														
F	FCX, FCY, FCZ	Converter main circuit fuse		450A			630A			900A		90	0A	80	0A
	FIU, FIV, FIW,														
U	FIX, FIY, FIZ	Inverter main circuit fuse		450A			630A			900A		90	0A	80	0A
	(OPTION)														
	FSU, FSV, FSW	Bypass main circuit fuse	450A		-	630A		-	900A		-		-		-
S	FUD1, 2	Control power fuse	D	C500V 3	A	D	C500V 3	A	D	DC500V 3A		DC500V 3A		DC50	0V 3A
Е	FUS1, 2, 3	Bypass input ZNR fuse	A	C600V 10	DA	A	AC600V 10A		AC600V 10A		AC600V 10A		AC600	OV 10A	
S	FZS1, 2, 3	Bypass input ZNR fuse	A	C600V 3	DA	A	C600V 3	A	A	C600V 3	DA	AC600	OV 30A	AC600	OV 30A
	FBS1, 2	CB3 control circuit fuse	A	C600V 5	A	A	C600V 5	A	A	C600V 5	iΑ	AC60	0V 5A	AC60	0V 5A
	FZC1, 2, 3	AC input ZNR fuse	A	C600V 3	DA	A	C600V 3	A	A	C600V 3	DA	AC600	OV 30A	AC600	OV 30A



2.0 OPERATOR CONTROLS AND INDICATORS

The 9700 Series operator controls and indicators are located as follows:

Circuit breakers and contactors	: Inside the module
UPS status indicators	: Outside of door

2.1 LED Display

1) Load on inverter (green)

Turned on when power is supplied from inverter to the critical load. (Indicates the state of transfer switch "52C" of inverter.)

2) Battery operation (yellow)

Turned on when the battery is operating following an AC power failure..

3) Load on bypass (yellow)

Turned on when power is supplied through bypass to load devices. (Indicates the state of transfer switch "52S" of bypass.)

4) Overload(yellow)

Turned on when an overload has occurred to the system.

5) LCD failure [LCD FAIL](red)

Turned on when an error occurs on the LCD.

6) UPS failure [UPS FAIL](red) [Annunciator: intermittent or constant tones]

Turned on when an error occurs on the system. In this case, the details of error are indicated on the display panel.

2.3 Liquid Crystal Display (8)

The Liquid Crystal Display (LCD) panel indicates the power flow, measured values, operational guidance, data record and error messages. The LCD panel is back-lit to facilitate viewing in different ambient lighting conditions. The LCD will automatically clear if the keyboard is not activated for 3 minutes. The ERROR indicator is cleared after 24 hours and can be reproduced by pressing any key on the panel.

2.3.1 Menu's

A) MAIN MENU (FIGURE 2.2)

The LCD panel indicates the power flow, measured values and remote operation mode. The LCD panel shows the power flow. This allows the user to verify the status of the UPS Module.

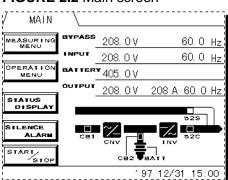


FIGURE 2.2 Main screen

The following will be displayed when the measuring point button on LCD panel is pressed.

1) Bypass Voltage (FIGURE 2.3)

The voltages displayed are the Bypass input voltages (line-to-line) between phases A-B, B-C, C-A and frequency of the Bypass line. Line to neutral voltages A-N, B-N, C-N are measured on 4 wire systems only.

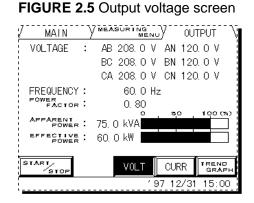
FIGURE 2.3 Bypass screen

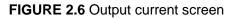
VOLTAGE : AB 208.0 V AN 120.0 V BC 208.0 V BN 120.0 V CA 208.0 V CN 120.0 V
FREQUENCY: 60.0 Hz
START STOP 2 97 12/31 15:00

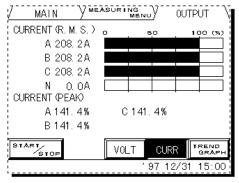
2) Input Voltage and Current (FIGURE 2.4)

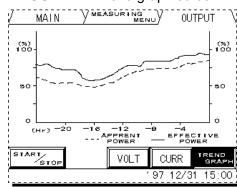
The voltages displayed are the RMS AC input voltages (line-to-line) between phases A-B, B-C C-A and frequency of the AC input line. The RMS values of Phases A, B and C currents are also displayed.

Y MAIN YMEA		INPUT \
VOLTAGE :	AB 208.0 V	
1	BC 208.0 V	:
	CA 208.0 V	
CURRENT :	A 190.0 A	
(R. M. S.)	B 190.0 A	
	C 190.0 A	
FREQUENCY:	60. O Hz	
START		
	′ 97 12	/31 15:00


FIGURE 2.4 Input screen


3) Output Voltage, Output Current and Trend Graph


The voltages displayed on the LCD include the inverter output voltages A-B, B-C, C-A. Line to neutral voltages A-N, B-N, C-N are displayed on 4 wire systems only. Inverter output frequency is also displayed. (FIGURE 2.5)


The current displayed and the RMS values and Peak Values of Phases A, B, C. N-current (Neutral) is display on a 4 wire system only. (FIGURE 2.6)

The Trend Graph displays the Effective power values and the Reactive power values. (FIGURE 2.7)

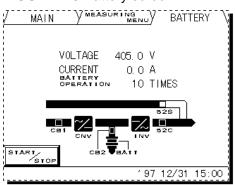


FIGURE 2.7 Trend graph screen

4) Battery (FIGURE 2.8)

This displays the charging, discharging or float mode of the battery, battery current and battery voltage.

FIGURE 2.8 Battery screen

5) Remote / Local Selection (FIGURE 2.9)

The system asks user to select whether the start & stop operation will be performed by a local or remote operation.

FIGURE 2.9 Remote / Local selection

/ MAIN	YOPERAT		SET	UP V
REMOTE/LOC	AL			
Select	REMOTE″or	″LOCAL″o	perat	ion.
	REMOTE	LOCAL		
START				
		<u> </u>	12/31	15:00

B) OPERATION MENU (FIGURE 2.10)

The following will be displayed when the OPERATION MENU button is pressed on theLCD

FIGURE 2.10 Operation menu screen

MAIN YOPERAT	
START-UP MENU	DATA RECORD
STOP MENU	REPORT
EXTERNAL CONTACT INPUT	SETUP
	SELECT UPS Output Source
START	
· · · · · · · · · · · · · · · · · · ·	197 12/31 15:00

1) START-UP MENU

The display indicates the operation from closing circuit breakers to starting the inverter. When the inverter is started, the display shows the MAIN MENU. When the display changes, the annunciator sounds 3 times requesting user to perform next procedure.

2) STOP MENU

The display indicates the operation of how to stop the inverter and to shutdown the UPS system.

3) EXTERNAL CONTACT INPUT

The input of external contacts is indicated by closed or open contacts.

4) DATA RECORD

Operation data and events is indicated.

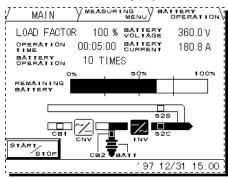
5) REPORT

Record data is indicated.

6) SETUP

Time, Remote/Local selection and Equalizing charge are set.

7) SELECT UPS OUTPUT SOURCE


This display is used to transfer the UPS from inverter to static bypass for maintenance purposes.

2.3.2 INPUT POWER FAILURE

During an Input Power Failure the UPS will run on the Batteries. The following will be displayed. The indication of battery operation, load factor, and bar graph.

FIGURE 2.11 Battery Operation Screen

The LCD will display a battery low voltage announcement when battery capacity is near depletion.

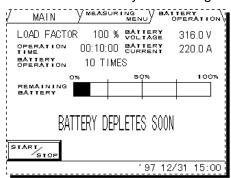


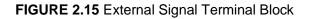
FIGURE 2.12 Battery Low Voltage Screen

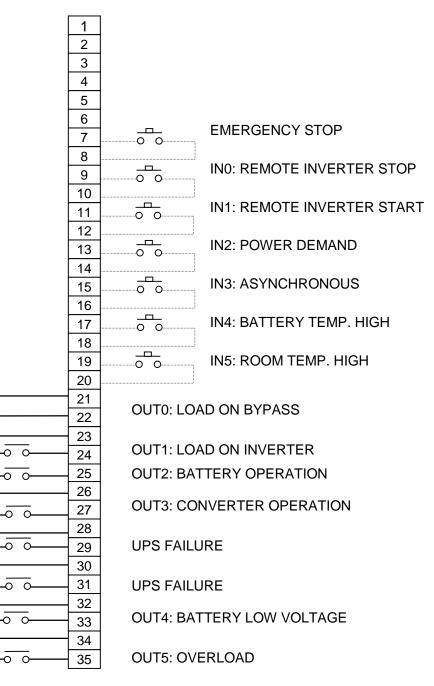
The End of Battery Discharge announcement is displayed when the battery end voltage is reached. At that time, the inverter will perform an electronic shutdown to prevent battery loss of life typical of extreme deep discharge conditions. The inverter will automatically restart to power the load and the batteries will be simultaneously recharged after input power is restored. Details of the End of Battery announcement is shown in Figure 2.13.

FIGURE 2.13 Discharge Termination Screen

/ MAIN	MEASUR	MENU Y B	OPERATION
LOAD FACTOR	۶ 0 % 00:15:00	BATTERY VOLTAGE BATTERY CURRENT	360.0 V 0.0 A
BATTERY OPERATION	10 TIME	-	1
O REMAINING BATTERY	*	50%	100%
	INVERTER	STOPPED	
START			
		<u> </u>	2/31 15:00

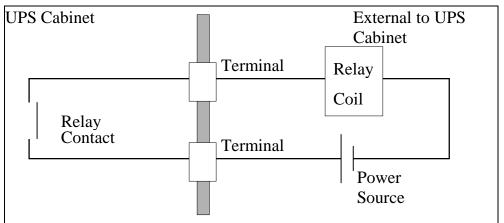
2.3.3 FAULT INDICATION (FIGURE 2.14)


The display shows a fault code, description of fault and a guidance of what action is to take place by the user. A maximum of 10 faults are displayed at the same time. When an input power failure occurs during the fault Indication, the fault indication and input power failure are alternatively displayed at 5 second intervals.


MAIN Y CETATLEUS (UPS STATUS) MAJOR FAULT (1/2)	ALARM CALL TEL NO.
TIME : 10/25 15:00 <u>CODE : UF103 _ 22</u> #DC UNDERVOLTAGE →CALL SERVICE ENGINEER 	1-800-887-7830
START ALARM CALL	START STOP
′ 97 12/31 15:00	′ 97 12/31 15:00

2.4 External Signal Terminal Block

The UPS is equipped with a series of input/output terminals for the external annunciation of alarms and the remote access of certain UPS functions. A functional description of the input/output port is presented below. Layout of terminals is shown in Figure 2.15



A) Output Contacts(for external alarm annunciation)

Output contacts consist of form "A" dry type contacts. Rated value of all output contacts is 120Vac/0.5Aac or 30Vdc/1Adc. Operate all dry contacts at their rated values or lower. Figure 2.16 illustrates typical installation. The external relay can also be a lamp, LED, computer, etc.

Details of output alarm contacts :

Terminals 22 to 21 "Load on Bypass" contact (OUT0)

Activated when the power is supplied from the static bypass input.

Terminals 24 to 26 "Load on Inverter" contact (OUT1)

Activated when the power is supplied by the inverter.

Terminals 25 to 26 "Battery Operation" contact (OUT2)

Activated when the battery is operating following an AC power failure.

Terminals 27 to 28 "Converter Operation" contact (OUT3)

Activated when the converter is operating.

Terminals 29 to 30 "UPS failure" contact

Activated when a major fault has occurred to the system.

Terminals 31 to 32 "UPS failure" contact

Activated when a major fault has occurred to the system.

Terminals 34 to 33 "Battery Low Voltage" contact (OUT4)

Activated when DC voltage dropped below discharge end during inverter operation.

Terminals 35 to 34 "Overload" contact (OUT5)

Activated when an overload has occurred to the system.

NOTE: The UPS is equipped with a selectable output contact feature. The above alarms are the default settings. Contact MITSUBISHI ELECTRIC AUTOMATION, INC. for set-up information.

B) Input Contacts(for remote access of UPS)

External contacts are provided by the user of the UPS system. Terminal voltage at the UPS is 24Vdc. Provide external dry contact accordingly.

NOTE: Do not apply voltage to remote access input terminals. Damage to UPS may result.

Refer to Figure 2.17 for typical wiring configuration. Although this figure applies to the remote start/stop terminals, the same wiring arrangement is used for emergency stop; asynchronous command; power demand; battery temperature high.

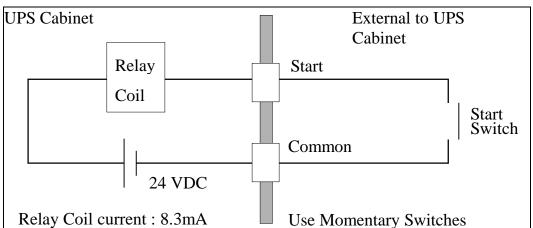


FIGURE 2.17 Remote "Start" Contact Connections

Details of input contacts for remote access :

Terminals 7 to 8 "Emergency Stop" contact input

Used to perform a remote UPS emergency power off (EPO). *The load will be dropped.*

Terminals 9 to 10 **Remote "Inverter Stop" input terminal (IN0)**

Used to stop inverter from a remote location. UPS must be programmed for remote operation. Refer to Operations Menu for procedure.

Terminals 11 to 12 Remote "Inverter Start" input terminal (IN1)

Used to start inverter from a remote location. UPS must be programmed for remote operation. Refer to Operations Menu for procedure.

Terminals 13 to 14 "Power Demand Command" contact input (IN2)

Used to control the input current limit to the UPS converter (usually during

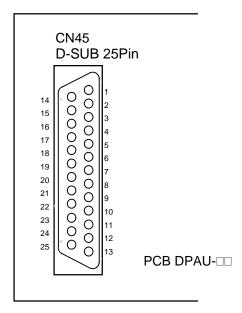
generator operation). Power demand is turned ON when the contact is closed. Power demand is turned OFF when the contact is open.

Terminals 15 to 16 "Asynchronous Command" contact input (IN3)

Used to create an asynchronous condition between the static bypass source and the inverter. Asynchronous condition is enabled when the switch is closed. Asynchronous condition is disabled when the switch is opened.

Terminals 17 to 18 "BATTERY TEMP. HIGH" contact input (IN4)

Input fed by a thermocouple that monitors battery temperature. The converter float voltage level is reduced for battery over-temperature conditions. Use battery manufacture recommended thermocouple.


Terminals 19 to 20 **"ROOM TEMP. HIGH" contact input (IN5)** Input fed by a thermocouple that monitors room temperature. External thermocouple is user supplied.

NOTE : In all cases, a switch having a plate is recommended in order to reduce possibility of accidental operation.

2.5 External communication connector

This is a RS232C port for "DiamondLink". Layout of connector is shown in Figure 2.18.

FIGURE 2.18 External communication connector

Pin 2. TXD : Transmit data Pin 3. RXD : Receive data Pin 7. GND : Signal ground Pin 9. 5VS : DC5V supply Pin 10. GND : Ground Pin 11. 5VS : DC5V supply

3.0 INSTALLATION AND OPERATION

3.1 Transportation and Installation

TABLE 3.1 How to transport and install the system

Transportation	Installation
Transport unit with forklift.	Using the holes (4 - 24) pre drilled into the
Use eye bolts (supplied) to carry with	UPS channel base, anchor the unit using
overhead crane.	appropriate hardware.

Note : Do not transport in a horizontal position. Cabinets should be maintained upright within +/- 15° during handling.

3.2 Installation Procedure

A) Note the load tolerance of the floor

Refer to Table 3.2 for list of weights of UPS's.

TABLE 3.2List of UPS weights

UPS Capacity (kVA)	100	150	225	300	375
Weight (lb.)	3060	3810	4960	5890	6620

B) Minimum clearance required for ventilation

Right side	1.0" (25 mm) (not required when sidecars are used)
Left side	1.0" (25 mm) (not required when sidecars are used)
Back side	0.0" (0.0 mm)
Top side	23.6" (600 mm) (for air flow)

C) Space requirement for routine maintenance

Allow the following space at the time of installation.

Front _____ 39.4" (1000 mm)

Sides _____ 0.0" (0.0 mm)

Rear 0.0" (0.0 mm)

D) External Battery Supply

Please refer to the following when installing batteries:

- 1. The customer shall make reference to the battery manufacturer's installation manual for battery installation and maintenance instructions.
- 2. The maximum permitted fault current from the remote battery supply and the DC voltage rating of the battery supply over-current protective device are shown in Table 3.3.

UPS CAPACITY	DC VOLTAGE	MAXIMUM PERMITTED
(kVA)	RATING (V)	FAULT CURRENT (A)
100	360	35000
150	360	25000
225	360	25000
300	360	25000
375	360	25000

TABLE 3.3 Maximum Permitted Fault Current

3.3 Procedure for Cable Connections

- A) Required metric tools 19mm wrench, 19mm socket.
- B) Confirm the capacity of the UPS being installed. Identify the input/output power terminal blocks as shown in the appropriate Figure 3.1 through Figures 3.2-a~h.
- C) Connect the internal control wire and power wire.
 - i) Control wire Inter-connect
 - a) AC input cabinet (300, 375kVA only)
 - (1) CB1-UVR to terminal 45, 46 in bypass cabinet section.
 - (2) CB1 Alarm to terminal 43, 44 in bypass cabinet section.
 - (3) CB1 Auxiliary connect to terminal 41, 42 in bypass cabinet section.
 - (4) Input transformer Over-temperature to terminal 52, 54 in bypass cabinet section.
 - (5) Control power A, B, C phases (Terminal block) to A00, B00, C00 in UPS converter section.
 - b) DC breaker cabinet or battery cabinet
 - CB2-UVR to terminal 59, 60 (300, 375kVA) / 5, 6 (100, 150, 225kVA) in bypass cabinet section.
 - (2) CB2 Alarm to terminal 57, 58 (300, 375kVA) / 1, 2 (100, 150, 225kVA) in bypass cabinet section.

- (3) CB2 Auxiliary to terminal 55, 56 (300, 375kVA) / 3, 4 (100, 150, 225kVA) in bypass cabinet section.
- ii) Power wire Inter-connect
 - a) Output of transformer cabinet
 - (1) X1 (A-phase) to A10 bus bar in UPS converter section.
 - (2) X2 (B-phase) to B10 bus bar in UPS converter section.
 - (3) X3 (C-phase) to C10 bus bar in UPS converter section.
 - b) DC Input to UPS
 - (1) Positive cable to BP bus bar in UPS converter section.
 - (2) Negative cable to NP bus bar in UPS converter section.
- D) Connect the grounding conductor from the input service entrance to the UPS ground bar.
- E) <u>Two (2) sources feeding the UPS</u>:
 - i) Connect the converter input power cables from the input service entrance to the converter input power terminals identified as A00, B00, C00 or A10, B10, C10 in Figures 3.2-a~h. Input cables must be sized for an ampacity larger than the maximum input drawn by the converter. Refer to Table 3.4 for recommended cable sizes.
 - ii) Confirm that an external bypass input circuit breaker (MCCB) is installed (refer to WARNING 2). Connect the bypass input power cables from the input service entrance to the bypass input power terminals identified as A40, B40, C40 and N40 in Figures 3.2-a~h. Bypass input cables must be sized for an ampacity larger than the maximum output current capacity of the UPS. Refer to Table 3.4 for recommended cable sizes.

F) One (1) source feeding the UPS:

- i) Confirm that an external input circuit breaker sized to protect both the converter input and the bypass lines is installed. Consult equipment nameplate for current ratings. Connect the bypass input power cables from the input service entrance to the bypass input power terminals identified as A40, B40, C40 and N40 in Figures 3.2-a~h. Input cables must be sized for an ampacity larger than the maximum current capacity of the UPS. Refer to Table 3.4 for recommended cable sizes.
- ii) Using adequately sized conductors per Table 3.4 and referring to the appropriate figure identified in Figures 3.2-a~h, jumper bypass terminals A40, B40, C40 to converter input power A00, B00, C00 or A10, B10, C10 identified Figures 3.2-a~h.

- G) Referring to Figures 3.2-a~h, connect UPS load terminals A50, B50, C50 and N50 to load distribution panel. Refer to Table 3.4 for cable sizes.
- H) Connect external signal terminal block as needed. Refer to section 2.4 and Figure 2.15 for functional description. 12 AWG, or less, shielded conductor is recommended.
- NOTES: 1. Confirm that all UPS internal contactors(breakers) "CB1", "CB2", and "CB3" are open before energizing UPS.
 - 2. UPS power terminals are supplied with bus bar and hardware (12mm diameter Nut/Bolt assembly). It is recommended that compression lugs be used to fasten all input/output power cables. Refer to Table 3.5 for recommended compression lugs and appropriate crimping tool.
 - 3. If three wire source for input and bypass input is utilized, the neutral conductor is the UPS must be banded to ground.

Table 3.4 Recommended cable size and torque requirements

			Input Sid	e * 1, 2	Output Sid	de * 1, 2	Bypass S	de * 1, 2	DC Input S	ide * 1, 2
kVA	Input	Output	Cable	Torque	Cable	Torque	Cable	Torque	Cable	Torque
Capacity	Voltage	Voltage	Size	in. lbs.	Size	in. lbs.	Size	in. lbs.	Size	in. Ibs.
100kVA	208V	208V	300 MCM	347 - 469	300 MCM	347 - 469	300 MCM	347 - 469	250 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	480V	480V	1/0 AWG	200 - 269	1/0 AWG	200 - 269	1/0 AWG	200 - 269	250 MCM	200 - 269
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	600V	600V	3 AWG	200 - 269	3 AWG	200 - 269	3 AWG	200 - 269	250 M]	200 - 269
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
150kVA	208V	208V	600 MCM	347 - 469	600 MCM	347 - 469	600 MCM	347 - 469	500 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	480V	480V	3/0 AWG	347 - 469	3/0 AWG	347 - 469	3/0 AWG	347 - 469	500 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	600V	600V	1/0 AWG	347 - 469	1/0 AWG	347 - 469	1/0 AWG	347 - 469	500 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
225kVA	208V	208V	3x250 MCM	347 - 469	3x250 MCM	347 - 469	3x250 MCM	347 - 469	2x300 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	480V	480V	300 MCM	347 - 469	300 MCM	347 - 469	300 MCM	347 - 469	2x300 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	600V	600V	4/0 AWG	347 - 469	4/0 AWG	347 - 469	4/0 AWG	347 - 469	2x300 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
300kVA	208V	480V	3x350 MCM	347 - 469	500 MCM	347 - 469	500 MCM	347 - 469	2x600 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	480V		600 MCM	347 - 469	500 MCM	347 - 469	500 MCM	347 - 469	2x600 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	600V	600V	400 MCM	347 - 469	300 MCM	347 - 469	300 MCM	347 - 469	2x600 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
375kVA	208V	480V	3x500 MCM	347 - 469	700 MCM	347 - 469	700 MCM	347 - 469	3x400 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.
	480V		2x250 MCM	347 - 469	700 MCM	347 - 469	700 MCM	347 - 469	3x400 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. Ibs.	or larger	in. lbs.
	600V	600V	600 MCM	347 - 469	500 MCM	347 - 469	500 MCM	347 - 469	3x400 MCM	347 - 469
			or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.	or larger	in. lbs.

*1 - Voltage drop across power cables not to exceed 2% of nominal source voltage

*2 - Allowable ampacities based on 90 degree C insulation at an ambient temperature of 30 degree C

Not more than 3 conductors in a raceway without derating.

TABLE 3.5	Crimp Type	Compression Lug
-----------	------------	-----------------

WIRE SIZE	WIRE STRAND	RECOMMENDATION		CRIMP TOOL REQUIRED BURNDY TYPE Y35 OR Y46	
(CODE)	CLASS	VENDOR	CAT. NO.	COLOR KEY	DIE INDEX
2	В	BURNDY	YA2C	BROWN	10
		ILSCO	CRB-2L	BROWN	10
	I	BURNDY	YA1C-LB	GREEN	11 / 375
1	В	BURNDY	YA1C	GREEN	11 / 375
		ILSCO	CRA-1L	GREEN	11 / 375
	I	BURNDY	YA25-LB	PINK	12 / 348
1/0	В	BURNDY	YA25	PINK	12 / 348
		ILSCO	CRA-1/OL	PINK	12 / 348
0.40		BURNDY	YA25-LB	BLACK	13
2/0	В	BURNDY	YA26	BLACK	13
		ILSCO	CRA-2/OL	BLACK	13
3/0	l B	BURNDY BURNDY	YA27-LB YA27	ORANGE ORANGE	14 / 101 14 / 101
3/0	D	ILSCO	CRB-3/OL	ORANGE	14 / 101
	1	BURNDY	YA28-LB	PURPLE	15
4/0	B	BURNDY	YA28	PURPLE	15
-10	D	ILSCO	CRB-4/OL	PURPLE	15
	1	BURNDY	YA29-LB	YELLOW	16
250 MCM	B	BURNDY	YA29	YELLOW	16
	_	ILSCO	CRA-250L	YELLOW	16
	I	BURNDY	YA30-LB	WHITE	17 / 298
300 MCM	В	BURNDY	YA30	WHITE	17 / 298
		ILSCO	CRA-30OL	WHITE	17 / 298
	I	BURNDY	YA32-LB	RED	18 / 324
350 MCM	В	BURNDY	YA31	RED	18 / 324
		ILSCO	CRA-350L	RED	18 / 324
		BURNDY	YA34-LB	BLUE	19 / 470
400 MCM	В	BURNDY	YA32	BLUE	19 / 470
		ILSCO	CRA-40OL	BLUE	19 / 470
	B	BURNDY	YA34-LB	BROWN	20 / 299
500 MCM	Ď	BURNDY ILSCO	YA34 CRA-500L	BROWN BROWN	20 / 299 20 / 299
	1	BURNDY	YA38-LB	GREEN	20 / 299 22 / 472
600 MCM	B	BURNDY	YA36	GREEN	22 / 472
		ILSCO			
		BURNDY	YA39-LB	PINK	300
750 MCM	В	BURNDY	YA39	BLACK	24 / 473
		ILSCO	CRA-750L	BLACK	24 / 473
		BURNDY	YA44-LB	WHITE	27
1000	В	BURNDY	YA44	WHITE	27
MCM		ILSCO	CRA-1000L	WHITE	27
		BURNDY			

NOTE: When using crimp type lugs, the lugs should be crimped to the specifications given in the manufacturer's instructions for both crimp tool and lug.

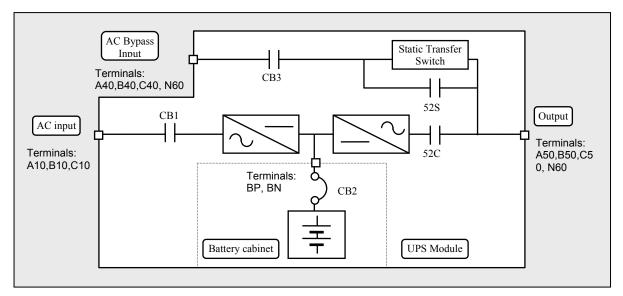
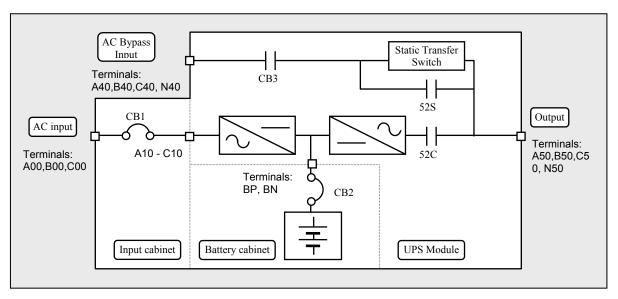



Fig.3.1-2 UPS Terminal Designation (300, 375kVA)

9700 SERIES UPS OWNERS / TECHNICAL MANUAL

Fig. 3.2-a-1 Diagram of input/output bus bars and terminal blocks (100kVA UPS, Input voltage 208VAC)

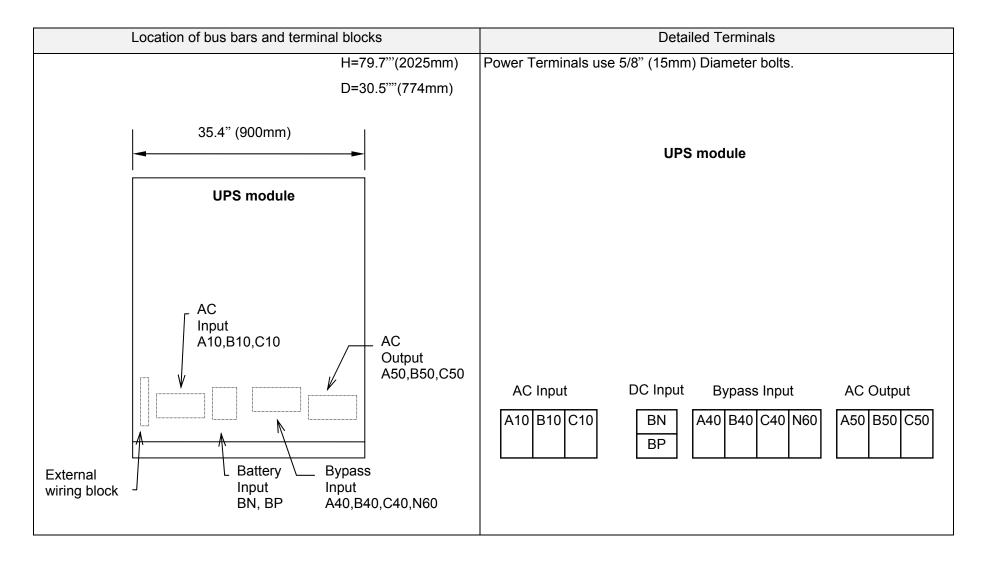
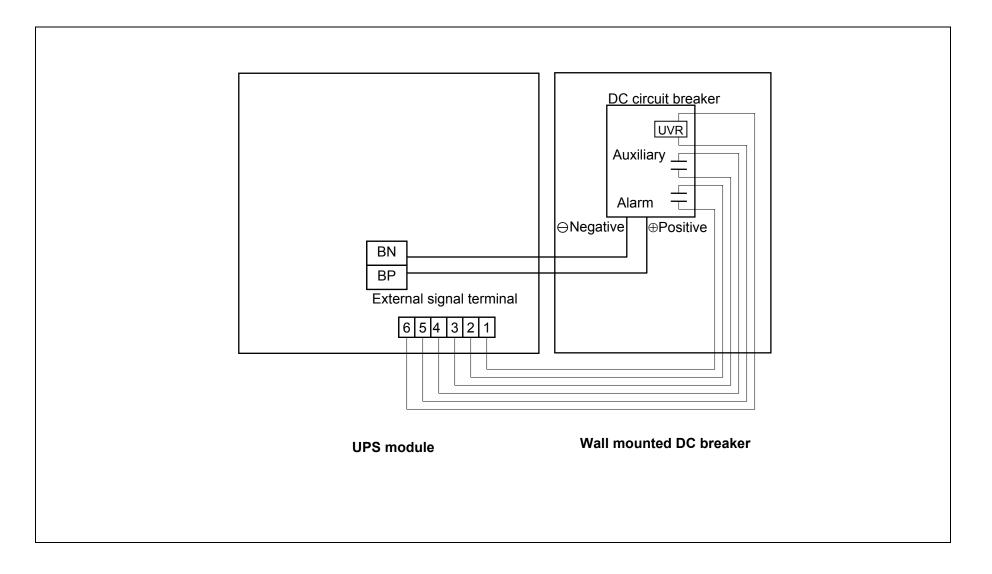



Fig. 3.2-a-2 Diagram of Power Wire & Control Wire Inter-Connect (100kVA UPS, Input voltage 208VAC)

9700 SERIES UPS OWNERS / TECHNICAL MANUAL

Fig. 3.2-b-1 Diagram of input/output bus bars and terminal blocks (100kVA UPS, Input voltage 480VAC)

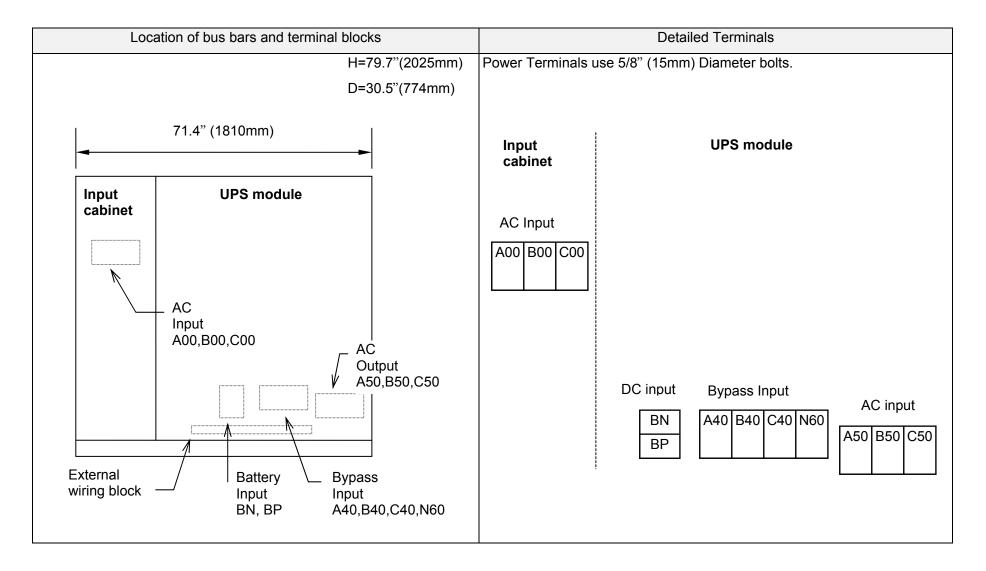


Fig. 3.2-b-2 Diagram of Power Wire & Control Wire Inter-Connect (100kVA UPS, Input voltage 480VAC)

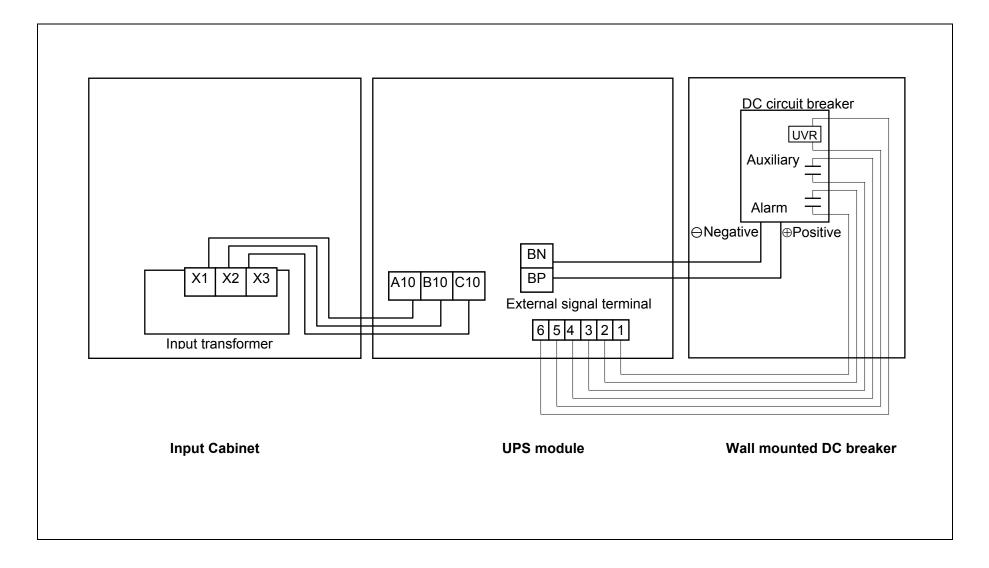


Fig. 3.2-c-1 Diagram of input/output bus bars and terminal blocks (150kVA UPS, Input voltage 208VAC)

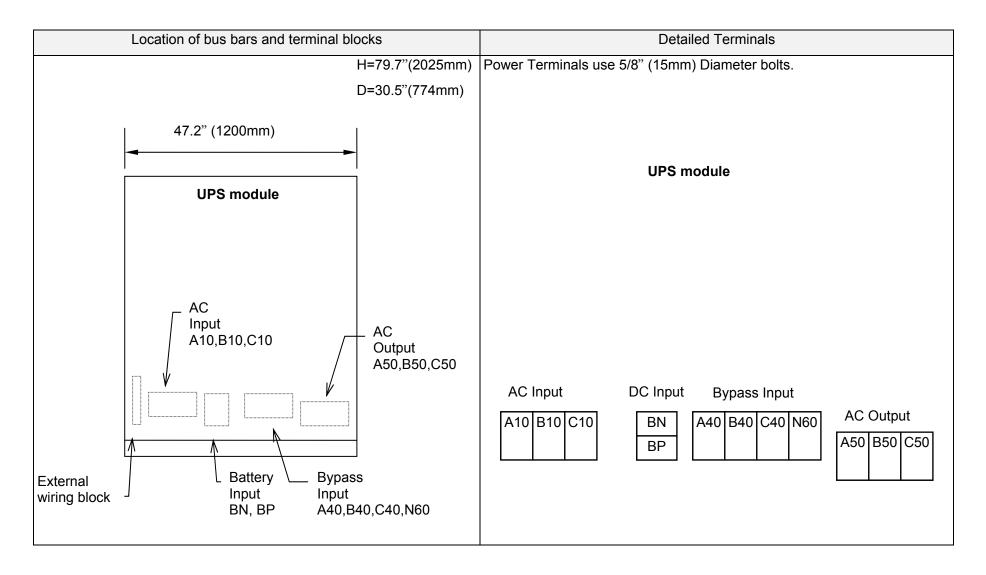
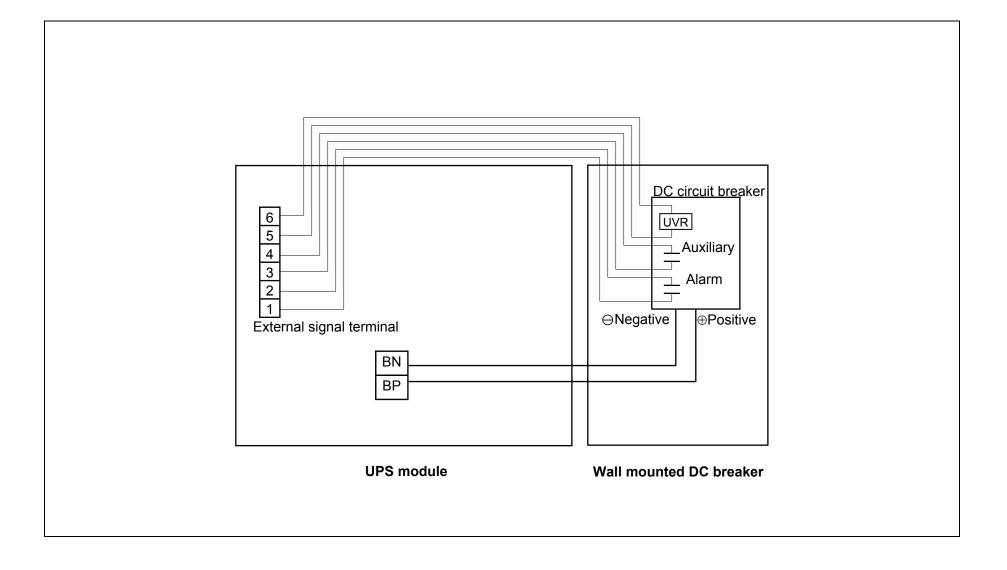



Fig. 3.2-c-2 Diagram of Power Wire & Control Wire Inter-Connect (150kVA UPS, Input voltage 208VAC)

9700 SERIES UPS OWNERS / TECHNICAL MANUAL

Fig. 3.2-d-1 Diagram of input/output bus bars and terminal blocks (150kVA UPS, Input voltage 480VAC)

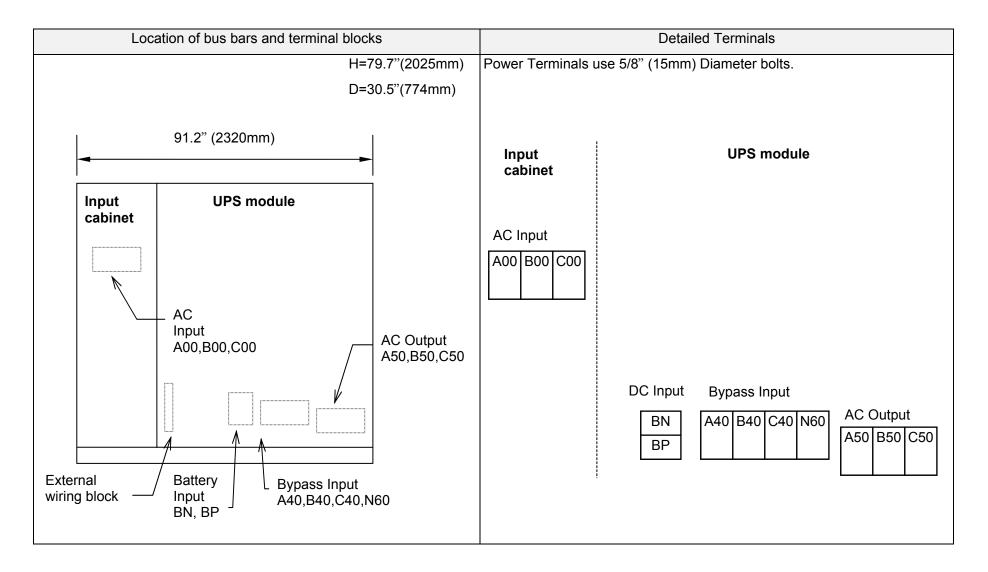
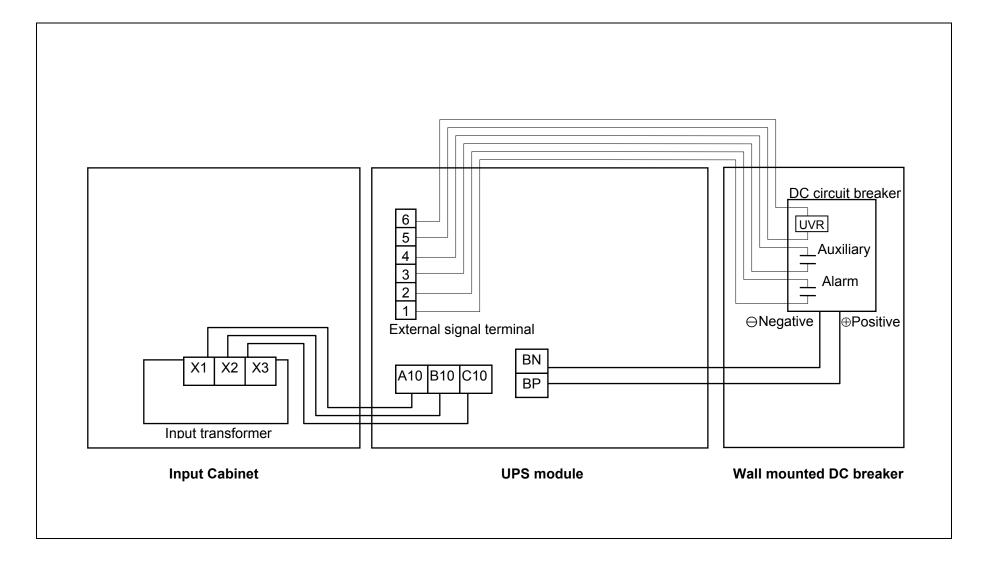



Fig. 3.2-d-2 Diagram of Power Wire & Control Wire Inter-Connect (150kVA UPS, Input voltage 480VAC)

Fig. 3.2-e-1 Diagram of input/output bus bars and terminal blocks (225kVA UPS, Input voltage 208VAC)

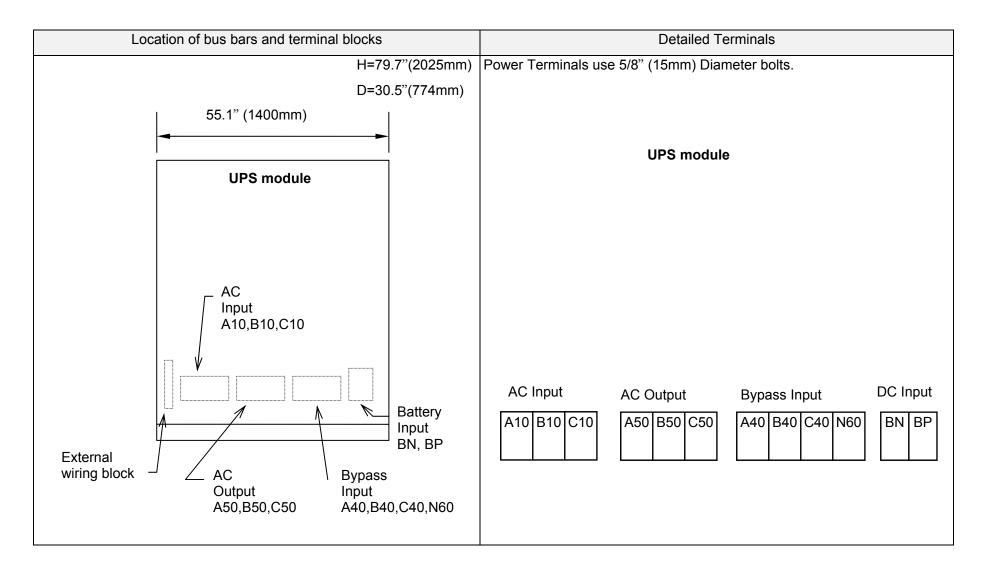


Fig. 3.2-e-2 Diagram of Power Wire & Control Wire Inter-Connect (225kVA UPS, Input voltage 208VAC)

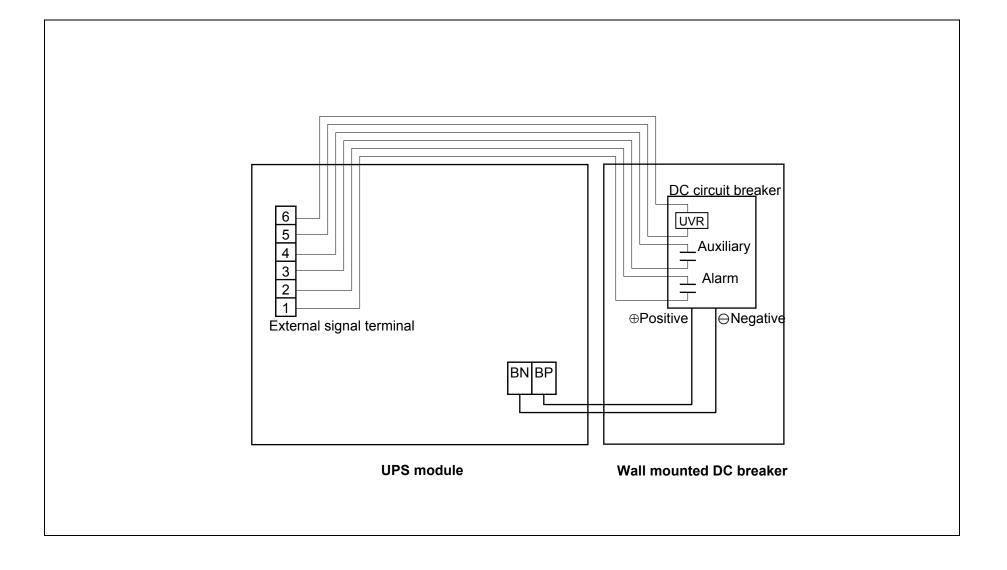
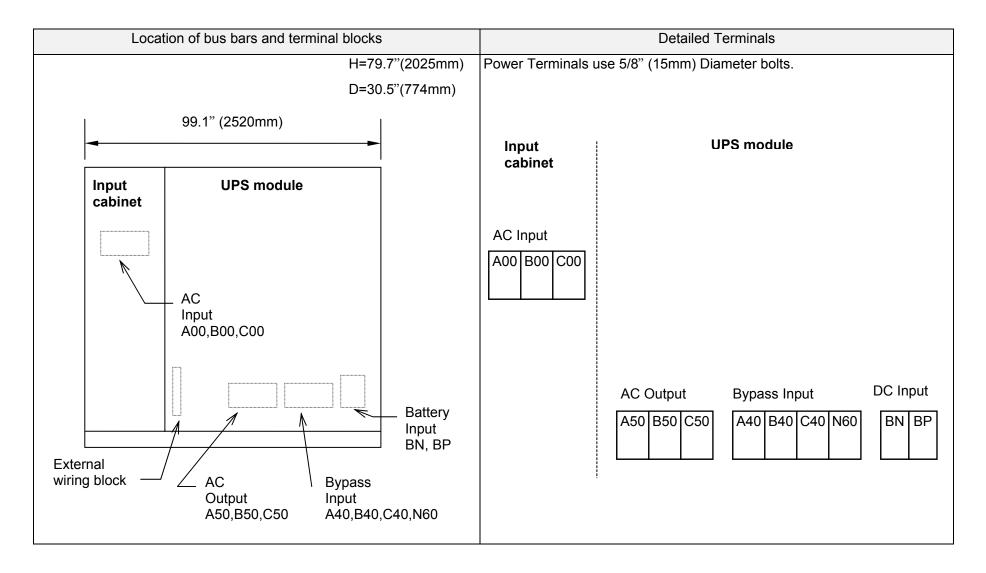
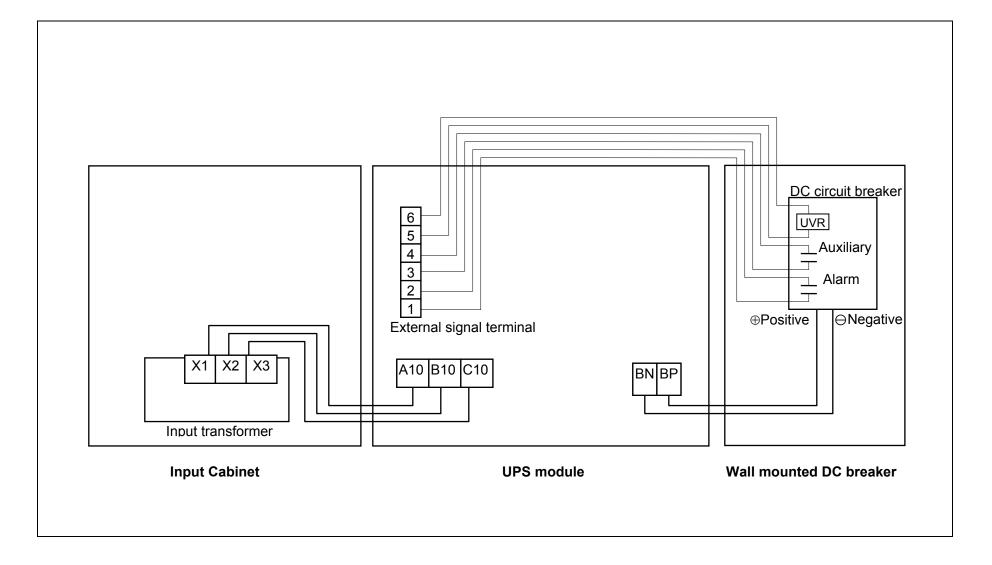
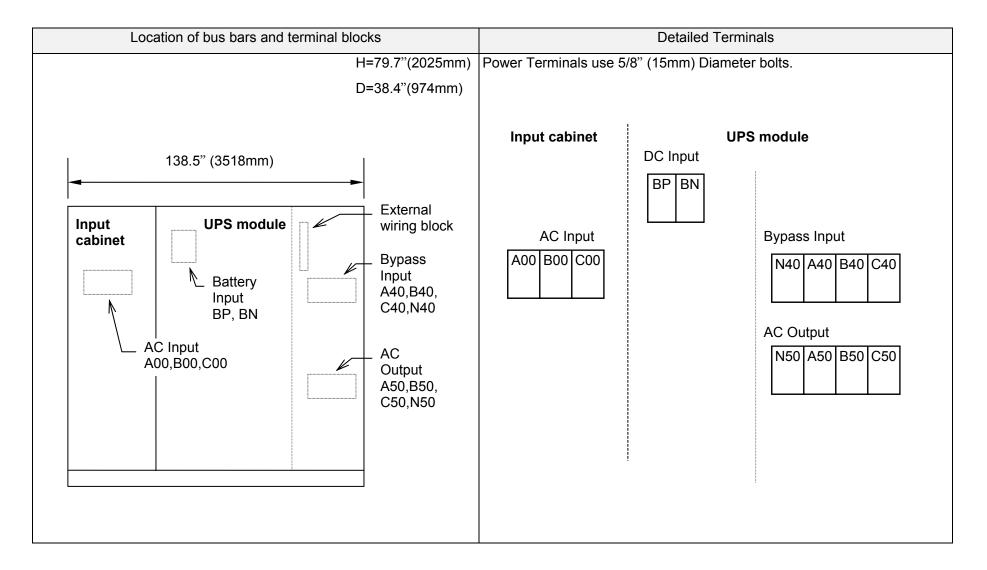
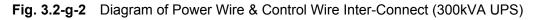


Fig. 3.2-f-1 Diagram of input/output bus bars and terminal blocks (225kVA UPS, Input voltage 480VAC)

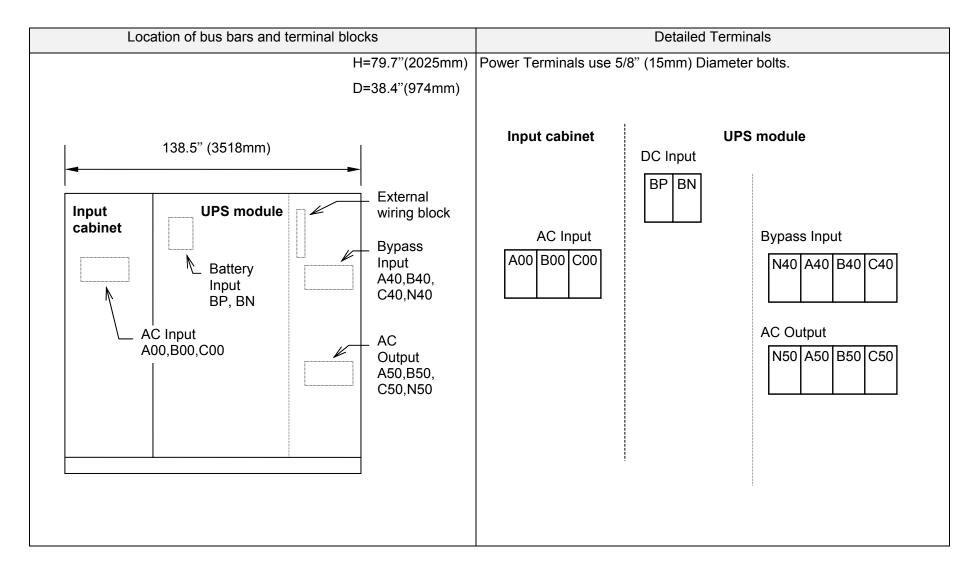




Fig. 3.2-f-2 Diagram of Power Wire & Control Wire Inter-Connect (225kVA UPS, Input voltage 480VAC)



9700 SERIES UPS OWNERS / TECHNICAL MANUAL

Fig. 3.2-g-1 Diagram of input/output bus bars and terminal blocks (300kVA UPS)



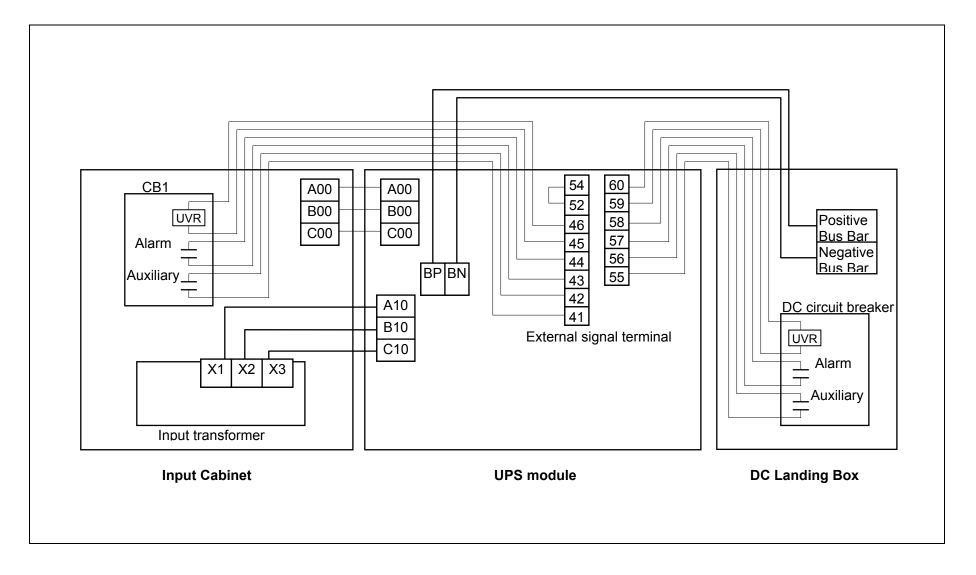
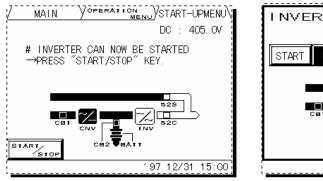

9700 SERIES UPS OWNERS / TECHNICAL MANUAL

Fig. 3.2-h-1 Diagram of input/output bus bars and terminal blocks (375kVA UPS)

Fig. 3.2-h-2 Diagram of Power Wire & Control Wire Inter-Connect (375kVA UPS)



3.4 Operating Procedures


A) UPS Start-up Procedure

- Verify that the External Bypass input Circuit Breaker(user supplied. Refer to warning 2) is closed.
- 2. Close Control Circuit Breaker (CB101).
- 3. After a few seconds, an audible annunciator will sound and the AC Input Circuit Contactor (CB1) will automatically close.
- 4. The audible annunciator will sound and the instruction "RESET CB2" will be displayed on the Liquid Crystal Display (LCD) panel.
- 5. Reset the Battery Disconnect Circuit Breaker (CB2). To reset CB2, press the handle down until the handle stays in the off position.
- 6. Close the Battery Disconnect Circuit Breaker (CB2).
- 7. The audible annunciator will sound and the instruction "PRESS START / STOP KEY" will be displayed on the LCD panel. (Figure 3.3)
- 8. Press the "Inverter Start" key in the START/STOP menu on the LCD panel. (Figure 3.4)

FIGURE 3.3 START-UP MENU

FIGURE 3.4 INVERTER START/STOP

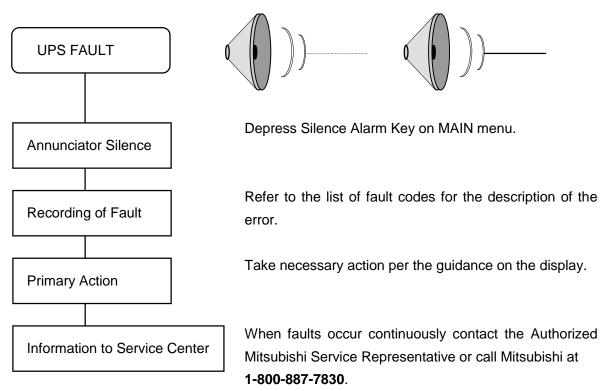
- 9. When the message "LOCAL" is displayed on the LCD panel, the inverter start operation can only be performed locally at the UPS front panel. When the message "REMOTE" is displayed on the LCD pane, the inverter start operation can be started by remote operation only. Lock-out of one inverter start mode is inherent and cannot be.
- 10. If a local inverter start operation is required (at the UPS), select "Local" in "Remote/Local" function via the Operation menu. Select "LOCAL" mode.
- 11. Within five (5) seconds, the Inverter will start-up and begin supplying power to the critical load.
- 12. If power is not supplied to the load, follow the instructions on the LCD panel.

B) UPS Shutdown Procedure

- 1. If a total UPS shutdown is required, verify that the critical load is OFF.
- 2. Select "STOP MENU" from the Operations menu.
- 3. Press the "INVERTER STOP" key in the START/STOP menu on the LCD panel. The UPS will transfer the load to the static bypass line.
- 4. When the "LOCAL" is displayed on the LCD panel, the operation can be performed at the UPS front panel. When the "REMOTE is displayed on the LCD pane, the Inverter can be stopped by remote operation only. If the inverter stop operation is required locally (at the UPS), select to "LOCAL" from the "Remote/Local" selection in the Operations menu. Select "Local" mode.
- 5. Generally, the Inverter alone will be stopped and the Converter will remain energized to float-charge the batteries.
- 6. If stopping the Converter is required, The operation instruction "TURN OFF CB2" will be displayed on the LCD panel.
- 7. Open the Battery Disconnect circuit breaker (CB2) manually. The operation instruction "TURN OFF CB101" will be displayed on the LCD panel.

WARNING : Verify the load is OFF if the next step is to be performed.

- 8. Open the control circuit breaker (CB101).
- 9. Open the AC Input circuit contactor (CB1) automatically.


NOTE : Power to the critical load is supplied through the static bypass line. Power to the critical will be lost after execution of the next step. The load will drop.

- 10. If turning off all power to critical load is desired, open the Bypass input Circuit Breaker(MCCB inside the user's cabinet) manually.
- 11. Contactor CB3 will open automatically.

CAUTION : All UPS power terminals are still live. Lethal voltages present. De-energize all external sources of AC and DC voltages before handling UPS.

4.0 RESPONSE TO UPS FAILURE

Note

The error code indicated on the LCD display panel at the time of UPS alarm condition is very important. In order to reduce repair time, please include this information, along with the operation status and load status, on all correspondence with Mitsubishi's field service group.

5.0 PARTS REPLACEMENT

Contact Mitsubishi or its Authorized Service Center on all issues regarding the replacement of parts.

A) Battery

Battery lifetime may vary according to the frequency of use and the average ambient operating temperature. Battery end of life is defined as the state of charge resulting in an ampere-hour capacity less than, or equal to, 80% of nominal capacity. Replace battery if capacity is within this percentage.

B) UPS Component Parts

Contact Mitsubishi or its Authorized Service Center for a complete parts replacement schedule. Recommended replacement time interval varies with operating environment. Contact Mitsubishi or its Authorized Service Center for application specific recommendations.

6.0 FAULT CODES

This section covers the fault codes, their description and required action.

At time of error :

A) Verify and record the occurrence of the alarm. Note details of alarm message on the LCD display panel.

Contact Mitsubishi Electric Automation, Inc. at 1-800-887-7830.

B) If a circuit breaker (MCCB) is in the trip state, depress the toggle to reset the breaker before closing it again.

Fault Code List

Fault Code L	Ist						1
Note 11.			Note 1	Note 2	Note 3	Note 4	
Code indication	Status massage	Contents	Guidance	Buzzer	External send-out contact	Failure Iamp	Code No
UF003	CONVERTER ABNORMAL	Preliminary charge impossible	1	[2]	Major	Lit up	64
UF007	SENSOR ABNORMAL	Converter input current sensor circuit abnormality	1	[2]	Major	Lit up	1
UF052	CB1 TRIPPED	Input circuit breaker CB1 has tripped	1	[1]	Minor	Flicker	97
UF053	CB1 ABNORMAL	Input circuit breaker CB1 abnormal	1	[1]	Minor	Flicker	96
UF056	CONVERTER OVERLOAD	Converter input overcurrent	1	[1]	Minor	Flicker	192
UF057	CONVERTER OVERTEMPERATURE	Overheating of converter circuit parts	1	[1]	Minor	Flicker	194
UF058	COOLING FAN ABNORMAL	Abnormality of cooling fan (converter circuit)	1	[1]	Minor	Flicker	193
UF059	CONVERTER ABNORMAL	Converter control circuit abnormality	1	[1]	Minor	Flicker	198
UF102	DC OVERVOLTAGE	Overvoltage of DC voltage	1	[2]	Major	Lit up	5
UF103	DC UNDERVOLTAGE	Low voltage of DC voltage	1	[2]	Major	Lit up	6
UF105	SENSOR ABNORMAL	DC voltage sensor circuit abnormality	1	[2]	Major	Lit up	2
UF106	DC CAPACITANCE ABNORMAL	Electrolytic capacitor abnormality	1	[2]	Major	Lit up	77
UF107	CB2 ABNORMAL	Battery disconnect circuit breaker CB2 abnormal	1	[2]	Major	Lit up	66
UF151	DC VOLTAGE ABNORMAL	Does not return to float voltage after power supply is resumed (24 hours)	2	[1]	Minor	Flicker	116
UF152	DC VOLTAGE ABNORMAL	Does not return to equalizing voltage after power supply is resumed	2	[1]	Minor	Flicker	117
UF153	CB2 TRIPPED	Battery disconnect circuit breaker CB2 has tripped.	1	[1]	Minor	Flicker	100
UF156		Battery temperature abnormality (UF157) lasted a long time (Note 6)	1	[1]	Minor Note 5	Flicker	107
UF157	BATTERY OVERTEMPERATURE	Battery temperature abnormality	2	[1]	Minor Note 5	Flicker	106
UF158 (Note10)	BATTERY LIQUID LEVEL LOW	Battery solution level drop (Note 7)	2	[1]	Minor Note 5	Flicker	105
UF159	DC GROUND FAULT	Grounding of DC circuit	1	[1]	Minor	Flicker	112
UF160	SENSOR ABNORMAL	Sensor abnormality of battery circuit	1	[1]	Minor	Flicker	114
UF161	CB2 TRIPPED (DC VOLTAGE ABNORMAL)	Does not return to float voltage after power supply is resumed (48 hours) (Note 6)	2	[1]	Minor	Flicker	196
UF162	BATTERY ABNORMAL	Battery abnormal detected by battery self test.					
UF201	INVERTER OVERVOLTAGE	Output overvoltage during inverter power supply (+ 15%)	1	[2]	Major	Lit up	12
UF202	INVERTER UNDERVOLTAGE	Output low voltage during inverter supply (- 15%)	1	[2]	Major	Lit up	13
UF203	INVERTER OVERCURRENT	Inverter output overcurrent	1	[2]	Major	Lit up	26
UF209	52C ABNORMAL	52C not turned ON	1	[2]	Major	Lit up	75
UF210	52C ABNORMAL	52C not turned OFF	1	[2]	Major	Lit up	76
UF212	FAN ABNORMAL	Fan power source abnormality during operation	1	[2]	Major	Lit up	65
UF213	INVERTER OR CONVERTER OVERTEMPERATURE	Overheating of main circuit parts	1	[2]	Major	Lit up	69
UF214	COOLING FAN ABNORMAL	Abnormality of cooling fan inside panel	1	[2]	Major	Lit up	67
UF215	FREQUENT OVERLOAD!	Load switching was made frequently during overload	4	[2]	Major Note5	Lit up	86
UF216	SENSOR ABNORMAL	Inverter output current sensor abnormality	1	[2]	Major	Lit up	11

MITSUBISHI ELECTRIC 9700 SERIES UPS

			9700 SERIES UPS OWNERS / TECHNICAL MANUAL			Page Number: 6-3			
UF254	88C ABNORMAL		Fan power source abnormality during operation	1	[1]	Minor	Flicker	197	
UF255	52C ABNORMAL		52C turned OFF during inverter power supply	1	[1]	Minor	Flicker	128	
UF256	OUTPUT VOLTAGE ABNORMAL		Inverter output voltage fell out of +/- 5%	1	[1]	Minor	Flicker	109	
UF257	52C ABNOR	MAL	52C not turned OFF when manual transfer	1	[1]	Minor	Flicker	98	
UF301	UPS CONTROL ERROR		Control microcomputer abnormality	1	[2]	Major	Lit up	19	
UF302	UPS CONTROL CIRCUIT ERROR		Control microcomputer abnormality	1	[2]	Major	Lit up	28	
UF303	UPS CONTROL ERROR		Control microcomputer abnormality	1	[2]	Major	Lit up	29	
UF304	UPS CONTROL ERROR		Control microcomputer abnormality	1	[2]	Major	Lit up	31	
UF305	UPS CONTROL ERROR		Control circuit abnormality	1	[2]	Major	Lit up	21	
UF306	UPS CONTROL ERROR		Control power source circuit abnormality	1	[2]	Major	Lit up	16	
UF309	INVERTER VO ABNORM		Inverter output voltage abnormality before inverter power supply	1	[2]	Major	Lit up	83	
UF351	CONTROL FUSE	BLOWN	Battery circuit's fuse burnt	1	[1]	Minor	Flicker	115	
UF352	SUPPLY OF CC CIRCUIT ABNO		Control circuit abnormality	1	[1]	Minor	Flicker	111	
UF355 (Note10)	UPS CONTROL ERROR		Control circuit abnormality	1	[1]	Minor	Flicker	130	
UF356	UPS CONTROL ERROR		Control circuit abnormality	1	[1]	Minor	Flicker	123	
UF357	"INVERTER S BUTTON ABNO		"INVERTER START" button is abnormal (Local)	1	[1]	Minor	Flicker	124	
UF358	"INVERTER S BUTTON ABNO		"INVERTER STOP" button is abnormal (Local)	1	[1]	Minor	Flicker	125	
UF359	"INVERTER SU BUTTON ABNO	-	"INVERTER SUPPLY" button is abnormal	1	[1]	Minor	Flicker	126	
UF360	"BYPASS SUI BUTTON ABNO		"BYPASS SUPPLY" button is abnormal	1	[1]	Minor	Flicker	127	
UF362	UPS CONTROL ERROR		52S control circuit abnormality (Note 8)	1	[1]	Minor	Flicker	195	
UF401	52S ABNOR	NADI	52S not turned ON, or 52S turned ON without any command	1	[2]	Major	Lit up	84	
UF402	52S ABNOR	N/I A I	52S not turned OFF, or 52S turned OFF without any command	1	[2]	Major	Lit up	85	
UF451	52S ABNOR	ΜΔΙ	52S not turned ON, or 52S turned ON without any command when manual transfer	1	[1]	Minor	Flicker	99	
UA801	AC INPUT VOLTA		AC input voltage fell out of +/- 18% range	3	[1]	Note 5		239	
UA802	AC INPUT FREC		Ac input frequency fell out of converter synchronization follow-up range	. 3	[1]	Note 5		161	
UA803	AC INPUT PH ROTATION EI		Phase rotation is inverted when input voltage is normal	3	[1]	Note 5		236	
UA804 (Note10)	BATTERY ABN	ORMAL	Battery abnormal (External input)	1	[1]	Note 5		238	
UA805 (Note10)	AMBIENT TEMPE ABNORM		Temp. abnormality in room where installed	11	[1]			237	
UA806	INVERTER OVEI	RLOAD >	Overload exceeded 105% (Note 9)	4	[1]	Over	Flicker	216	
UA807	INVERTER OVEI	RLOAD >	Overload exceeded 110% (Note 9)	4	[1]	Over	Flicker	217	
UA808	INVERTER OVEI 125%	RLOAD >	Overload exceeded 125% (Note 9)	4	[1]	Over	Flicker	218	
UA809	INVERTER OVEI 150%	RLOAD >	Overload exceeded 150% (Note 9)	4	[1]	Over	Flicker	219	
UA810	OVERLOA	۹D	Momentary over-current during Inverter power.	4	[1]	Over	Flicker	220	
UA811	BYPASS VOLTA OF RANG		Bypass voltage fell out of +/- 15% range at manual transfer	5	[1]	Note 5		240	

MITSUBISHI ELECTRIC 9700 SERIES UPS

			9700 SERIES UPS OWNERS / TECHNICAL MANUAL			Page Number: 6-4		
UA812	BYPASS VOLTAGE OUT OF RANGE		Bypass voltage fell out of +/- 20% range	5	[1]	Note 5		231
UA813	BYPASS PHASE ROTATION ERROR		Phase rotation is inverted when bypass voltage is normal	5	[1]			242
UA814	BYPASS FREQU OUT OF RANG		Bypass frequency fell out of inverter synchronization follow-up range	. 5	[1]	Minor Note 5		243
UA816	EXTENDED BYF OPERATION		Bypass power supply continued for many hours		[1]			244
UA817	EMERGENCY S ACTIVATED		Emergency stop applied	13	[2]	Minor	Flicker	232
UA819	REMOTE SWITCH ON(START)		There is an error with the remote start switch.	12	[1]			229
UA820	REMOTE SWIT ON(STOP)		There is an error with the remote stop switch.	12	[1]			230
UA821	UPS STOPPE (TRANSFER INHIE INVERTER AND B ASYNCHRONO	BITED - YPASS	Transfer cannot be permitted because Bypass voltage abnormal	5	[1]			249
UA822	GENERATOR OPE , INHIBITED BYF OPERATION	PASS	Transfer cannot be permitted because Generator operation contact is ON		[1]			246
UA823	CB1 OFF		AC input circuit breaker CB1 turned OFF 6		[1]			224
UA824	CB2 OFF		Battery disconnect circuit breaker CB2 turned OFF	7	[1]			225
UA826	CB101 OFF	-	Control power source breaker CB101 turned OFF during inverter operation	8	[1]			226
UA827	52C NOT PERMI	TTED	"52C PERMISSION" switch turned to OFF	9	[1]			233
UA830	AC INPUT UNDERVOLTA		AC input voltage fell out of - 10% range		[1]			234
UA831	EMERGENCY BY SWITCH ON		Emergency bypass switch turned to <emergency></emergency>	10	[1]			245
UA832	INTERRUPTE TRANSFER OCCU WHEN TRANSFEI TO BYPASS SOU	JRRED RRING	When transfer to the bypass supply, occurs interrupted transfer.	5	[1]			248
UA834	BATTERY DEPLI		DC voltage dropped below discharge end during inverter operation	10	[2]	Note 5		255
UA835	UPS STOPPE (TRANSFER INHIE BYPASS INPL ABNORMAL	BITED - JT	Transfer cannot be permitted because Bypass voltage is abnormal		[1]			250

MITSUBISHI ELECTRIC 9700 SERIES UPS

(Note 1) Numbered guidance:

- 1: Contact Mitsubishi. 1-800-887-7830
- 2: Verify battery is operating within recommended voltage and temperature ranges.
- 3: Verify input power source is properly connected.
- 4: Reduce load.
- 5: Verify bypass power source is within amplitude and frequency.
- 6: Close CB1.
- 7: Close CB2.
- 8: Close CB101.
- 9: Reduce load, and restart.
- 10: Press the reset button.
- 11: Reduce room temperature to within specified UPS operating limits
- 12: Verify remote switch is properly connected and/or functional.
- 13: Place switch in OFF position.

(Note 2)

Audible annunciator: [1] intermittent sound, [2] continuous sound.

(Note 3)

- "Major" is defined as major failure. Inverter transferred to the static bypass line;
- "Minor" is defined as a minor failure. UPS continues to operate normally, but cause of alarm must be identified;
- "Over" is defined as an overload condition. UPS will transfer to the static bypass line and may or may not return to the inverter. Return to inverter will occur only if overload corrects itself and output load is within rating of UPS.
- (Note 4)

Indicates one of two possible LED illumination patterns - continuously on (lit) or intermittent (flicker).

(Note 5)

External send-out possible by option setting.

(Note 6)

Trips the battery breaker CB2.

(Note 7)

For other than sealed-type battery.

(Note 8)

Place UPS Emergency Bypass switch in the BYPASS position. Contact Mitsubishi.

(Note 9)

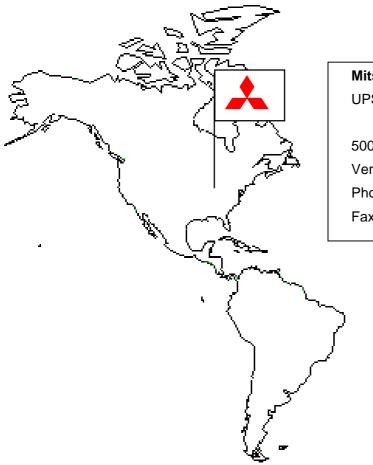
If the specified time passes, will transfer to the bypass power supply.

(Note 10)

Shows only when corresponding option settings are made.

(Note 11)

Code indication means:


	Alarm
	Failure
U¤0¤¤	Converter circuit failure
UD1DD	DC circuit failure
UD2DD	Inverter circuit failure
UD3DD	Control circuit failure
U¤4¤¤	Bypass system failure
UD8DD	Alarm
UDD00 - UDD49	Major failure
UDD50 - UDD99	Minor failure

7.0 Warranty & Out of warranty Service

The Mitsubishi Electric UPS Systems Group Service Department has many Authorized Service Centers place strategically throughout the US, Canada and Latin America. For both in warranty and out of warranty service, please contact Mitsubishi Electric Automation, Inc. at (847) 478-2500. To register your UPS for warranty purposes, please complete the warranty registration form and fax it to the Mitsubishi Electric UPS Systems Group, Service Department fax line shown on the registration form. (Next page)

For warranty purposes, it is essential that any and all service work that may be required on your Mitsubishi brand UPS equipment is performed by a Mitsubishi Electric Authorized Service Center. The use of non-authorized service providers may void your warranty.

Mitsubishi Electric Automation Inc, UPS Systems Group Service Department

500 Corporate Woods Parkway, Vernon Hills, Illinois 60061, USA Phone: (847) 478-2500 Fax: (847) 478-2290

Electrical Contractor

____ Healthcare

Internet

🙏 MITSUBISHI ELECTRIC

Mitsubishi Electric Automation, Inc. UNINTERRUPTIBLE POWER SUPPLIES 500 Corporate Woods Parkway, Vernon Hills, IL 60061 Phone: (847) 478-2643, Fax: (847) 478-2290

UPS Warranty Registration

___ Register UPS for Warranty ___ Address Change

To validate the Warranty on your UPS this form must be filled out completely by Customer and returned.

		CUSTOM	ER INFORMAT	ION			
Your Name:			J	ob Titl	e:		
Company Name:							
Division / Department:							
Address:							
City:			State:			Zip Code:	
Country:			<u> </u>	Prov	vince:		
Business Phone:		Ext:		Fax	:		
E-Mail: @				Inte	rnet Address:		
UPS Model #:		Сара	acity (kVA):	UPS	Serial #:		
Start-Up Date: / /	Aut	horized Mite	subishi Service C	ompar	ny (if known):		
Signature:					Date:	1 1	
Which ONE of These Best Desc Primary Business Classification	ribes Your Organ n?	ization's	Numb	oer of E	Employees at This	s Location is:	
{Energy Producer} Utility Alternate Energy	Education/U {Service} Consulting			1 - 19100 - 249 20 - 49250 - 499 50 - 99500 - 999		1000 or more	
{Manufacturing Co.}	Engineerin	g					
OEMOutsourcing			Overall how was Start-Up performed:				
Process Financial/Legal/Insuranc {Expectations}			ceUnsa	atisfacto	ory Satisfacto	bry Exceeded	
Consumer Goods	{Government}						
Electronics	Military		Would	ould you like to receive future product updates and			
Power Quality Equipment Municipals			news	news?			
Commercial Business	ate/Local	Yes	Yes No				

After Start-Up has been done Fax completed Form to: (847) 478-2290

Communications

__ Distributors/Reps

__ Other _